
R package for Prevision.io
October 25, 2021

create_connector Create a new connector of a supported type (among: "SQL", "FTP",
"SFTP", "S3", "GCP"). If check_if_exist is enabled, the function will
check if a connector with the same name already exists. If yes, it will
return a message and the information of the existing connector instead
of creating a new one.

Description

Create a new connector of a supported type (among: "SQL", "FTP", "SFTP", "S3", "GCP"). If
check_if_exist is enabled, the function will check if a connector with the same name already exists.
If yes, it will return a message and the information of the existing connector instead of creating a
new one.

Usage

create_connector(
project_id,
type,
name,
host,
port,
username,
password,
google_credentials = NULL,
check_if_exist = FALSE

)

Arguments

project_id id of the project, can be obtained with get_projects().

type connector type.

name connector name.

host connector host.

port connector port.

username connector username.

1

2 create_dataset_embedding

password connector password.
google_credentials

google credentials JSON (for GCP only).
check_if_exist boolean (FALSE by default). If TRUE, makes extra checks to see if a connector

with the same name is already existing.

Value

list - parsed content of the connector.

create_dataframe_from_dataset

Create a dataframe from a dataset_id.

Description

Create a dataframe from a dataset_id.

Usage

create_dataframe_from_dataset(dataset_id, path = getwd(), is_folder = FALSE)

Arguments

dataset_id dataset id.
path path (without / at the end) were to write the downloaded dataset.
is_folder TRUE if it’s a folder dataset, FALSE (by default) otherwise.

Value

data.frame - a R dataframe matching the dataset.

create_dataset_embedding

Create a dataset embedding from a dataset_id.

Description

Create a dataset embedding from a dataset_id.

Usage

create_dataset_embedding(dataset_id)

Arguments

dataset_id dataset id.

Value

integer - 200 on success.

create_dataset_from_dataframe 3

create_dataset_from_dataframe

Upload dataset from data frame.

Description

Upload dataset from data frame.

Usage

create_dataset_from_dataframe(project_id, dataset_name, dataframe, zip = FALSE)

Arguments

project_id id of the project, can be obtained with get_projects().

dataset_name given name of the dataset on the platform.

dataframe data.frame to upload.

zip is the temp file zipped before sending it to Prevision.io (default = FALSE).

Value

list - parsed content of the dataset.

create_dataset_from_datasource

Create a dataset from an existing datasource.

Description

Create a dataset from an existing datasource.

Usage

create_dataset_from_datasource(project_id, dataset_name, datasource_id)

Arguments

project_id id of the project, can be obtained with get_projects().

dataset_name given name of the dataset on the platform.

datasource_id datasource id.

Value

list - parsed content of the dataset.

4 create_datasource

create_dataset_from_file

Upload dataset from file name.

Description

Upload dataset from file name.

Usage

create_dataset_from_file(
project_id,
dataset_name,
file,
separator = ",",
decimal = "."

)

Arguments

project_id id of the project, can be obtained with get_projects().

dataset_name given name of the dataset on the platform.

file path to the dataset.

separator column separator in the file (default: ",")

decimal decimal separator in the file (default: ".")

Value

list - parsed content of the dataset.

create_datasource Create a new datasource If check_if_exist is enabled, the function will
check if a datasource with the same name already exists. If yes, it
will return a message and the information of the existing datasource
instead of creating a new one.

Description

Create a new datasource If check_if_exist is enabled, the function will check if a datasource with
the same name already exists. If yes, it will return a message and the information of the existing
datasource instead of creating a new one.

create_deployment_api_key 5

Usage

create_datasource(
project_id,
connector_id,
name,
path = "",
database = "",
table = "",
bucket = "",
request = "",
check_if_exist = FALSE

)

Arguments

project_id id of the project, can be obtained with get_projects().

connector_id connector_id linked to the datasource.

name datasource name.

path datasource path (for SFTP & FTP connector).

database datasource database (for SQL connector).

table datasource table (for SQL connector).

bucket datasource bucket (for S3 connector).

request datasource request (for SQLconnector).

check_if_exist boolean (FALSE by default). If TRUE, makes extra checks to see if a datasource
with the same name is already existing.

Value

list - parsed content of the datasource.

create_deployment_api_key

Create a new API key for a deployed model.

Description

Create a new API key for a deployed model.

Usage

create_deployment_api_key(deployment_id)

Arguments

deployment_id id of the deployment to create an API key on, can be obtained with get_deployments().

Value

list - API key information.

6 create_deployment_app

create_deployment_app [BETA] Create a new deployment for an application.

Description

[BETA] Create a new deployment for an application.

Usage

create_deployment_app(
project_id,
name,
git_url,
git_branch,
type,
broker,
app_cpu = 1,
app_ram = "128Mi",
app_replica_count = 1,
env_vars = list(),
access_type = "fine_grained",
description = NULL

)

Arguments

project_id id of the project, can be obtained with get_projects().

name name of the deployment.

git_url url of the git repository than contains the app to be deployed.

git_branch branch of the git repository than contains the app to be deployed.

type type of language in which the app is written among "r", "python" or "node".

broker broker of the git repository (gitlab, github) that contains the application.

app_cpu number of CPU that is allocated for the application deployment (1 default, 2 or
4)

app_ram quantity of RAM that is allocated for the application deployment (128Mi de-
fault, 256Mi, 512Mi, 1Gi, 2Gi, 4Gi or 8Gi)

app_replica_count

number of replica allocated for the application deployment (1 default, 2, 3, 4, 5,
6, 7, 8, 9 or 10)

env_vars list of environment variables (optional).

access_type type of access of the deployment among "fine_grained" (project defined, de-
fault), "private" (instance) or "public" (everyone).

description description of the deployment (optional).

Value

list - parsed content of the deployment.

create_deployment_model 7

create_deployment_model

[BETA] Create a new deployment for a model.

Description

[BETA] Create a new deployment for a model.

Usage

create_deployment_model(
project_id,
name,
experiment_id,
main_model_experiment_version_id,
challenger_model_experiment_version_id = NULL,
access_type = c("fine_grained", "private", "public"),
description = NULL,
main_model_id,
challenger_model_id = NULL

)

Arguments

project_id id of the project, can be obtained with get_projects().

name name of the deployment.

experiment_id id of the experiment to deploy, can be obtained with get_experiment_id_from_name().

main_model_experiment_version_id

id of the experiment_version to deploy, can be obtained with get_experiment_version_id().

challenger_model_experiment_version_id

id of the challenger experiment_version to deploy, can be obtained with get_experiment_version_id().

access_type type of access of the deployment among "fine_grained" (project defined, de-
fault), "private" (instance) or "public" (everyone).

description description of the deployment.

main_model_id id of the model to deploy

challenger_model_id

id of the challenger model to deploy

Value

list - parsed content of the deployment.

8 create_experiment

create_deployment_predictions

Create predictions on a deployed model using a dataset.

Description

Create predictions on a deployed model using a dataset.

Usage

create_deployment_predictions(deployment_id, dataset_id)

Arguments

deployment_id id of the deployment, can be obtained with get_deployments().

dataset_id id of the dataset to predict, can be obtained with get_dataset_id_from_name().

Value

integer - 200 on success.

create_experiment Create a new experiment. If check_if_exist is enabled, the function
will check if an experiment with the same name already exists. If yes,
it will return a message and the information of the existing experiment
instead of creating a new one.

Description

Create a new experiment. If check_if_exist is enabled, the function will check if an experiment with
the same name already exists. If yes, it will return a message and the information of the existing
experiment instead of creating a new one.

Usage

create_experiment(
project_id,
name,
provider,
data_type,
training_type,
check_if_exist = FALSE

)

create_experiment_version 9

Arguments

project_id id of the project in which we create the experiment.

name name of the experiment.

provider provider of the experiment ("prevision-auto-ml" or "external")

data_type type of data ("tabular", "images" or "timeseries").

training_type type of the training you want to achieve ("regression", "classification", "multi-
classification", "clustering", "object-detection" or "text-similarity").

check_if_exist boolean (FALSE by default). If TRUE, makes extra checks to see if an experi-
ment with the same name is already existing.

Value

list - experiment information.

create_experiment_version

Create a new version of an existing experiment.

Description

Create a new version of an existing experiment.

Usage

create_experiment_version(
experiment_id,
dataset_id = NULL,
target_column = NULL,
holdout_dataset_id = NULL,
id_column = NULL,
drop_list = NULL,
profile = NULL,
experiment_description = NULL,
metric = NULL,
fold_column = NULL,
normal_models = NULL,
lite_models = NULL,
simple_models = NULL,
with_blend = NULL,
weight_column = NULL,
features_engineering_selected_list = NULL,
features_selection_count = NULL,
features_selection_time = NULL,
folder_dataset_id = NULL,
filename_column = NULL,
ymin = NULL,
ymax = NULL,
xmin = NULL,
xmax = NULL,

10 create_experiment_version

time_column = NULL,
start_dw = NULL,
end_dw = NULL,
start_fw = NULL,
end_fw = NULL,
group_list = NULL,
apriori_list = NULL,
content_column = NULL,
queries_dataset_id = NULL,
queries_dataset_content_column = NULL,
queries_dataset_id_column = NULL,
queries_dataset_matching_id_description_column = NULL,
top_k = NULL,
lang = NULL,
models_params = NULL,
name = NULL,
onnx_file = NULL,
yaml_file = NULL

)

Arguments

experiment_id id of the experiment that will host the new version.

dataset_id id of the dataset used for the training phase.

target_column name of the TARGET column.
holdout_dataset_id

id of the holdout dataset.

id_column name of the id column.

drop_list list of names of features to drop.

profile chosen profil among "quick", "normal", "advanced".
experiment_description

experiment description.

metric name of the metric to optimise.

fold_column name of the fold column.

normal_models list of (normal) models to select with full FE & hyperparameters search (among
"LR", "RF", "ET", "XGB", "LGB", "NN", "CB").

lite_models list of (lite) models to select with lite FE & default hyperparameters (among
"LR", "RF", "ET", "XGB", "LGB", "NN", "CB", "NBC").

simple_models list of simple models to select (among "LR", "DT").

with_blend boolean, do we allow to include blend in the modelisation.

weight_column name of the weight columns.
features_engineering_selected_list

list of feature engineering to select (among "Counter", "Date", "freq", "text_tfidf",
"text_word2vec", "text_embedding", "tenc", "poly", "pca", "kmean").

features_selection_count

number of features to keep after the feature selection process.
features_selection_time

time budget in minutes of the feature selection process.

create_experiment_version 11

folder_dataset_id

id of the dataset folder (images).

filename_column

name of the file name path (images).

ymin name of the column matching the lower y value of the image (object detection).

ymax name of the column matching the higher y value of the image (object detection).

xmin name of the column matching the lower x value of the image (object detection).

xmax name of the column matching the higher x value of the image (object detection).

time_column name of column containing the timestamp (time series).

start_dw value of the start of derivative window (time series), should be a strict negative
integer.

end_dw value of the end of derivative window (time series), should be a negative integer
greater than start_dw.

start_fw value of the start of forecast window (time series), should be a strict positive
integer.

end_fw value of the end of forecast window (time series), should be a strict positive
integer greater than start_fw.

group_list list of name of feature that describes groups (time series).

apriori_list list of name of feature that are a priori (time series).

content_column content column name (text-similarity).

queries_dataset_id

id of the dataset containing queries (text-similarity).

queries_dataset_content_column

name of the column containing queries in the query dataset (text-similarity).

queries_dataset_id_column

name of the ID column in the query dataset (text-similarity).

queries_dataset_matching_id_description_column

name of the column matching id in the description dataset (text-similarity).

top_k top k individual to find (text-similarity).

lang lang of the text (text-similarity).

models_params parameters of the model (text-similarity).

name name of the external model (external model).

onnx_file path to the onnx file (external model).

yaml_file path to the yaml file (external model).

Value

list - experiment information.

12 create_exporter

create_export Export data using an existing exporter and the resource to export

Description

Export data using an existing exporter and the resource to export

Usage

create_export(exporter_id, type, dataset_id = NULL, prediction_id = NULL)

Arguments

exporter_id id of the exporter, can be obtained with get_exporters().

type type of data to export among \"dataset"\, \"validation-prediction\" or \"deployment-
prediction\"

dataset_id id of the dataset to export (only for type == \"dataset\")

prediction_id id of the prediction to export (only for type == \"validation_prediction\" or type
== \"deployment-prediction\")

Value

list - parsed content of the export.

create_exporter Create a new exporter

Description

Create a new exporter

Usage

create_exporter(
project_id,
connector_id,
name,
description = "",
filepath = "",
file_write_mode = "timestamp",
database = "",
table = "",
database_write_mode = "append",
bucket = ""

)

create_folder 13

Arguments

project_id id of the project, can be obtained with get_projects().

connector_id connector_id linked to the exporter.

name exporter name.

description description of the exporter.

filepath exporter path (for SFTP & FTP connector).

file_write_mode

writing type when exporting a file (for SFT & FTP connector, among \"times-
tamp\", \"safe\" or \"replace\")

database exporter database (for SQL connector).

table exporter table (for SQL connector).

database_write_mode

writing type when exporting data within a database (for SQL connector, among
\"append\" or \"replace\").

bucket exporter bucket (for S3 connector).

Value

list - parsed content of the exporter.

create_folder Upload folder from a local file.

Description

Upload folder from a local file.

Usage

create_folder(project_id, folder_name, file)

Arguments

project_id id of the project, can be obtained with get_projects().

folder_name given name of the folder on the platform.

file path to the folder.

Value

list - parsed content of the folder.

14 create_pipeline

create_pipeline [BETA] Create a new pipeline of a supported type among "compo-
nent", "template", "run".

Description

[BETA] Create a new pipeline of a supported type among "component", "template", "run".

Usage

create_pipeline(
project_id,
type,
name,
git_url = NULL,
git_branch = NULL,
repository_name = NULL,
broker = NULL,
config_dataset_id = NULL,
nodes = NULL,
pipeline_template_id = NULL,
pipeline_parameters = NULL

)

Arguments

project_id id of the project, can be obtained with get_projects().

type type of the pipeline to be retrieved among "component", "template", "run".

name name of the pipeline.

git_url url of the git repository than contains the component.

git_branch branch of the git repository than contains the component.
repository_name

name of the git repository that contains the component.

broker broker of the git repository that contains the component.
config_dataset_id

only for templates.

nodes list, only for templates.
pipeline_template_id

id of the pipeline template to add for a run.
pipeline_parameters

list of parameters for the run.

Value

list - parsed content of the pipeline.

create_pipeline_trigger 15

create_pipeline_trigger

[BETA] Trigger an existing pipeline run.

Description

[BETA] Trigger an existing pipeline run.

Usage

create_pipeline_trigger(pipeline_id)

Arguments

pipeline_id id of the pipeline run to trigger, can be obtained with get_pipelines().

Value

integer - 200 on success.

create_prediction Create a prediction on a specified experiment_version

Description

Create a prediction on a specified experiment_version

Usage

create_prediction(
experiment_version_id,
dataset_id = NULL,
folder_dataset_id = NULL,
confidence = FALSE,
best_single = FALSE,
model_id = NULL,
queries_dataset_id = NULL,
queries_dataset_content_column = NULL,
queries_dataset_id_column = NULL,
queries_dataset_matching_id_description_column = NULL,
top_k = NULL

)

16 create_project

Arguments

experiment_version_id

id of the experiment_version, can be obtained with get_experiment_version_id().

dataset_id id of the dataset to start the prediction on, can be obtained with get_datasets().
folder_dataset_id

id of the folder dataset to start prediction on, can be obtained with get_folders().
Only usefull for images use cases.

confidence boolean. If enable, confidence interval will be added to predictions.

best_single boolean. If enable, best single model (non blend) will be used for making pre-
dictions other wise, best model will be used unless if model_id is fed.

model_id id of the model to start the prediction on. If provided, it will overwrite the "best
single" params.

queries_dataset_id

id of the dataset containing queries (text-similarity).
queries_dataset_content_column

name of the content column in the queries dataset (text-similarity).
queries_dataset_id_column

name of the id column in the queries dataset (text-similarity).
queries_dataset_matching_id_description_column

name of the column matching the id (text-similarity).

top_k number of class to retrieve (text-similarity).

Value

list - parsed prediction information.

create_project Create a new project. If check_if_exist is enabled, the function will
check if a project with the same name already exists. If yes, it will
return a message and the information of the existing project instead of
creating a new one.

Description

Create a new project. If check_if_exist is enabled, the function will check if a project with the same
name already exists. If yes, it will return a message and the information of the existing project
instead of creating a new one.

Usage

create_project(
name,
description = NULL,
color = "#a748f5",
check_if_exist = FALSE

)

create_project_user 17

Arguments

name name of the project.

description description of the project.

color color of the project among \"#4876be\", \"#4ab6eb\", \"#49cf7d\", \"#dc8218\",
\"#ecba35\", \"#f45b69\", \"#a748f5\", \"#b34ca2\" or \"#2fe6d0\" (#a748f5 by
default).

check_if_exist boolean (FALSE by default). If TRUE, makes extra checks to see if a project
with the same name is already existing.

Value

list - information of the created project.

create_project_user Add user in and existing project.

Description

Add user in and existing project.

Usage

create_project_user(project_id, user_mail, user_role)

Arguments

project_id id of the project, can be obtained with get_projects().

user_mail email of the user to be add.

user_role role to grand to the user among "admin", "contributor", "viewer" or "end_user".

Value

list - information of project’s users.

delete_connector Delete an existing connector.

Description

Delete an existing connector.

Usage

delete_connector(connector_id)

Arguments

connector_id id of the connector to be deleted, can be obtained with get_connectors().

18 delete_datasource

Value

integer - 200 on success.

delete_dataset Delete an existing dataset.

Description

Delete an existing dataset.

Usage

delete_dataset(dataset_id)

Arguments

dataset_id id of the dataset, can be obtained with get_datasets().

Value

integer - 204 on success.

delete_datasource Delete a datasource

Description

Delete a datasource

Usage

delete_datasource(datasource_id)

Arguments

datasource_id id of the datasource to be deleted, can be obtained with get_datasources().

Value

integer - 200 on success.

delete_deployment 19

delete_deployment Delete an existing deployment

Description

Delete an existing deployment

Usage

delete_deployment(deployment_id)

Arguments

deployment_id id of the deployment, can be obtained with get_deployments().

Value

integer - 204 on success.

delete_experiment Delete a experiment on the platform.

Description

Delete a experiment on the platform.

Usage

delete_experiment(experiment_id)

Arguments

experiment_id id of the experiment, can be obtained with get_experiments().

Value

integer - 204 on success.

20 delete_folder

delete_exporter Delete an exporter

Description

Delete an exporter

Usage

delete_exporter(exporter_id)

Arguments

exporter_id id of the exporter to be deleted, can be obtained with get_exporters().

Value

integer - 204 on success.

delete_folder Delete an existing folder.

Description

Delete an existing folder.

Usage

delete_folder(folder_id)

Arguments

folder_id id of the folder to be deleted.

Value

integer - 200 on success.

delete_pipeline 21

delete_pipeline Delete an existing pipeline

Description

Delete an existing pipeline

Usage

delete_pipeline(pipeline_id, type)

Arguments

pipeline_id id of the pipeline to be retrieved, can be obtained with get_pipelines().

type type of the pipeline to be retrieved among "component", "template", "run".

Value

integer - 204 on success.

delete_prediction Delete a prediction.

Description

Delete a prediction.

Usage

delete_prediction(prediction_id)

Arguments

prediction_id id of the prediction to be deleted, can be obtained with get_experiment_version_predictions().

Value

integer - 204 on success.

list of predictions of experiment_id.

22 delete_project_user

delete_project Delete an existing project.

Description

Delete an existing project.

Usage

delete_project(project_id)

Arguments

project_id id of the project, can be obtained with get_projects().

Value

integer - 204 on success.

delete_project_user Delete user in and existing project.

Description

Delete user in and existing project.

Usage

delete_project_user(project_id, user_id)

Arguments

project_id id of the project, can be obtained with get_projects().

user_id user_id of the user to be delete, can be obtained with get_project_users().

Value

integer - 200 on success.

get_best_model_id 23

get_best_model_id Get the model_id that provide the best predictive performance given
experiment_version_id. If include_blend is false, it will return the
model_id from the best "non blended" model.

Description

Get the model_id that provide the best predictive performance given experiment_version_id. If
include_blend is false, it will return the model_id from the best "non blended" model.

Usage

get_best_model_id(experiment_version_id, include_blend = TRUE)

Arguments

experiment_version_id

id of the experiment_version, can be obtained with get_experiment_version_id().

include_blend boolean, indicating if you want to retrieve the best model among blended models
too.

Value

character - model_id.

get_connector_id_from_name

Get a connector_id from a connector_name for a given project_id. If
duplicated name, the first connector_id that match it is retrieved.

Description

Get a connector_id from a connector_name for a given project_id. If duplicated name, the first
connector_id that match it is retrieved.

Usage

get_connector_id_from_name(project_id, connector_name)

Arguments

project_id id of the project, can be obtained with get_projects(project_id).

connector_name name of the connector we are searching its id from.

Value

character - id of the connector if found.

24 get_connectors

get_connector_info Get information about connector from its id.

Description

Get information about connector from its id.

Usage

get_connector_info(connector_id)

Arguments

connector_id id of the connector to be retrieved, can be obtained with get_connectors().

Value

list - parsed content of the connector.

get_connectors Get information of all connectors available for a given project_id.

Description

Get information of all connectors available for a given project_id.

Usage

get_connectors(project_id)

Arguments

project_id id of the project, can be obtained with get_projects().

Value

list - parsed content of all connectors for the suppled project_id.

get_dataset_embedding 25

get_dataset_embedding Get a dataset embedding from a dataset_id.

Description

Get a dataset embedding from a dataset_id.

Usage

get_dataset_embedding(dataset_id)

Arguments

dataset_id dataset id.

Value

integer - 200 on success.

get_dataset_head Show the head of a dataset from its id.

Description

Show the head of a dataset from its id.

Usage

get_dataset_head(dataset_id)

Arguments

dataset_id id of the dataset, can be obtained with get_datasets().

Value

data.frame - head of the dataset.

26 get_dataset_info

get_dataset_id_from_name

Get a dataset_id from a dataset_name. If duplicated name, the first
dataset_id that match it is retrieved.

Description

Get a dataset_id from a dataset_name. If duplicated name, the first dataset_id that match it is
retrieved.

Usage

get_dataset_id_from_name(project_id, dataset_name)

Arguments

project_id id of the project, can be obtained with get_projects().

dataset_name name of the dataset we are searching its id from. Can be obtained with get_datasets().

Value

character - id of the dataset if found.

get_dataset_info Get a dataset from its id.

Description

Get a dataset from its id.

Usage

get_dataset_info(dataset_id)

Arguments

dataset_id id of the dataset, can be obtained with get_datasets().

Value

list - parsed content of the dataset.

get_datasets 27

get_datasets Get information of all datasets available for a given project_id.

Description

Get information of all datasets available for a given project_id.

Usage

get_datasets(project_id)

Arguments

project_id id of the project, can be obtained with get_projects().

Value

list - parsed content of all datasets for the suppled project_id.

get_datasource_id_from_name

Get a datasource_id from a datasource_name If duplicated name, the
first datasource_id that match it is retrieved

Description

Get a datasource_id from a datasource_name If duplicated name, the first datasource_id that match
it is retrieved

Usage

get_datasource_id_from_name(project_id, datasource_name)

Arguments

project_id id of the project, can be obtained with get_projects().
datasource_name

name of the datasource we are searching its id from. Can be obtained with
get_datasources().

Value

character - id of the datasource if found.

28 get_datasources

get_datasource_info Get a datasource from its id.

Description

Get a datasource from its id.

Usage

get_datasource_info(datasource_id)

Arguments

datasource_id id of the data_sources to be retrieved, can be obtained with get_datasources().

Value

list - parsed content of the data_sources.

get_datasources Get information of all data sources available for a given project_id.

Description

Get information of all data sources available for a given project_id.

Usage

get_datasources(project_id)

Arguments

project_id id of the project, can be obtained with get_projects().

Value

list - parsed content of all data_sources for the supplied project_id.

get_deployment_api_keys 29

get_deployment_api_keys

Get API keys for a deployed model.

Description

Get API keys for a deployed model.

Usage

get_deployment_api_keys(deployment_id)

Arguments

deployment_id id of the deployment to get API keys, can be obtained with get_deployments().

Value

data.frame - API keys available for deployment_id.

get_deployment_app_logs

Get logs from a deployed app.

Description

Get logs from a deployed app.

Usage

get_deployment_app_logs(deployment_id, log_type)

Arguments

deployment_id id of the deployment to get the log, can be obtained with get_deployments().

log_type type of logs we want to get among "build", "deploy" or "run".

Value

list - logs from deployed apps.

30 get_deployment_info

get_deployment_id_from_name

Get a deployment_id from a name and type for a given project_id. If
duplicated name, the first deployment_id that match it is retrieved.

Description

Get a deployment_id from a name and type for a given project_id. If duplicated name, the first
deployment_id that match it is retrieved.

Usage

get_deployment_id_from_name(project_id, name, type)

Arguments

project_id id of the project, can be obtained with get_projects().

name name of the deployment we are searching its id from.

type type of the deployment to be retrieved among "model" or "app".

Value

character - id of the connector if found.

get_deployment_info Get information about a deployment from its id.

Description

Get information about a deployment from its id.

Usage

get_deployment_info(deployment_id)

Arguments

deployment_id id of the deployment to be retrieved, can be obtained with get_deployments().

Value

list - parsed content of the deployment.

get_deployment_prediction_info 31

get_deployment_prediction_info

Get information related to predictions of a prediction_id.

Description

Get information related to predictions of a prediction_id.

Usage

get_deployment_prediction_info(prediction_id)

Arguments

prediction_id id of the prediction returned by create_deployment_predictions or that can be
obtained with get_deployment_predictions().

Value

list - prediction information for a deployed model.

get_deployment_predictions

Get listing of predictions related to a deployment_id.

Description

Get listing of predictions related to a deployment_id.

Usage

get_deployment_predictions(deployment_id)

Arguments

deployment_id id of the deployment, can be obtained with get_deployments().

Value

list - predictions available for a deployed model.

32 get_deployments

get_deployment_usage Get usage (calls, errors and response time) of the last version of a
deployed model.

Description

Get usage (calls, errors and response time) of the last version of a deployed model.

Usage

get_deployment_usage(deployment_id, usage_type)

Arguments

deployment_id id of the deployment to get usage, can be obtained with get_deployments().

usage_type type of usage to get, among "calls", "errors", "response_time".

Value

list - plotly object.

get_deployments Get information of all deployments of a given type available for a
given project_id.

Description

Get information of all deployments of a given type available for a given project_id.

Usage

get_deployments(project_id, type)

Arguments

project_id id of the project, can be obtained with get_projects().

type type of the deployment to retrieve among "model" or "app".

Value

list - parsed content of all deployments of the given type for the supplied project_id.

get_experiment_id_from_name 33

get_experiment_id_from_name

Get a experiment_id from a experiment_name If duplicated name, the
first experiment_id that match it is retrieved.

Description

Get a experiment_id from a experiment_name If duplicated name, the first experiment_id that match
it is retrieved.

Usage

get_experiment_id_from_name(project_id, experiment_name)

Arguments

project_id id of the project, can be obtained with get_projects().
experiment_name

name of the experiment we are searching its id from. Can be obtained with
get_experiments().

Value

character - id matching the experiment_name if found.

get_experiment_info Get a experiment from its experiment_id.

Description

Get a experiment from its experiment_id.

Usage

get_experiment_info(experiment_id)

Arguments

experiment_id id of the experiment, can be obtained with get_experiments().

Value

list - parsed content of the experiment.

34 get_experiment_version_id

get_experiment_version_features

Get features information related to a experiment_version_id.

Description

Get features information related to a experiment_version_id.

Usage

get_experiment_version_features(experiment_version_id)

Arguments

experiment_version_id

id of the experiment_version, can be obtained with get_experiment_version_id().

Value

list - parsed content of the experiment_version features information.

get_experiment_version_id

Get a experiment version id from a experiment_id and its version num-
ber.

Description

Get a experiment version id from a experiment_id and its version number.

Usage

get_experiment_version_id(experiment_id, version_number = 1)

Arguments

experiment_id id of the experiment, can be obtained with get_experiments().

version_number number of the version of the experiment. 1 by default

Value

character - experiment version id.

get_experiment_version_info 35

get_experiment_version_info

Get a experiment_version info from its experiment_version_id

Description

Get a experiment_version info from its experiment_version_id

Usage

get_experiment_version_info(experiment_version_id)

Arguments

experiment_version_id

id of the experiment_version, can be obtained with get_experiment_version_id().

Value

list - parsed content of the experiment_version.

get_experiment_version_models

Get a model list related to a experiment_version_id.

Description

Get a model list related to a experiment_version_id.

Usage

get_experiment_version_models(experiment_version_id)

Arguments

experiment_version_id

id of the experiment_version, can be obtained with get_experiment_version_id().

Value

list - parsed content of models attached to experiment_version_id.

36 get_experiments

get_experiment_version_predictions

Get a list of prediction from a experiment_version_id.

Description

Get a list of prediction from a experiment_version_id.

Usage

get_experiment_version_predictions(
experiment_version_id,
generating_type = "user"

)

Arguments

experiment_version_id

id of the experiment_version, can be obtained with get_experiment_version_id().
generating_type

can be "user" (= user predictions) or "auto" (= hold out predictions).

Value

list - parsed prediction list items.

get_experiments Get information of all experiments available for a given project_id.

Description

Get information of all experiments available for a given project_id.

Usage

get_experiments(project_id)

Arguments

project_id id of the project, can be obtained with get_projects().

Value

list - parsed content of all experiments for the supplied project_id.

get_exporter_exports 37

get_exporter_exports Get all exports done from an exporter_id

Description

Get all exports done from an exporter_id

Usage

get_exporter_exports(exporter_id)

Arguments

exporter_id id of the exporter to retrieve information, can be obtained with get_exporters().

Value

list - list of exports of the supplied exporter_id.

get_exporter_id_from_name

Get a exporter_id from a exporter_name. If duplicated name, the first
exporter_id that match it is retrieved

Description

Get a exporter_id from a exporter_name. If duplicated name, the first exporter_id that match it is
retrieved

Usage

get_exporter_id_from_name(project_id, exporter_name)

Arguments

project_id id of the project, can be obtained with get_projects().

exporter_name name of the exporter we are searching its id from. Can be obtained with get_exporters().

Value

character - id of the exporter if found.

38 get_exporters

get_exporter_info Get an exporter from its id.

Description

Get an exporter from its id.

Usage

get_exporter_info(exporter_id)

Arguments

exporter_id id of the exporter to be retrieved, can be obtained with get_exporters().

Value

list - parsed content of the exporter.

get_exporters Get information of all exporters available for a given project_id.

Description

Get information of all exporters available for a given project_id.

Usage

get_exporters(project_id)

Arguments

project_id id of the project, can be obtained with get_projects().

Value

list - parsed content of all exporters for the supplied project_id.

get_features_infos 39

get_features_infos Get information of a given feature related to a experiment_version_id.

Description

Get information of a given feature related to a experiment_version_id.

Usage

get_features_infos(experiment_version_id, feature_name)

Arguments

experiment_version_id

id of the experiment_version, can be obtained with get_experiment_version_id().

feature_name name of the feature to retrive information.

Value

list - parsed content of the specific feature.

get_folder Get a folder from its id.

Description

Get a folder from its id.

Usage

get_folder(folder_id)

Arguments

folder_id id of the image folder, can be obtained with get_folders().

Value

list - parsed content of the folder.

40 get_folders

get_folder_id_from_name

Get a folder_id from a folder_name. If duplicated name, the first
folder_id that match it is retrieved.

Description

Get a folder_id from a folder_name. If duplicated name, the first folder_id that match it is retrieved.

Usage

get_folder_id_from_name(project_id, folder_name)

Arguments

project_id id of the project, can be obtained with get_projects().

folder_name name of the folder we are searching its id from. Can be obtained with get_folders().

Value

character - id of the folder if found.

get_folders Get information of all image folders available for a given project_id.

Description

Get information of all image folders available for a given project_id.

Usage

get_folders(project_id)

Arguments

project_id id of the project, can be obtained with get_projects().

Value

list - parsed content of all folders.

get_model_cv 41

get_model_cv Get the cross validation file from a specific model.

Description

Get the cross validation file from a specific model.

Usage

get_model_cv(model_id)

Arguments

model_id id of the model to get the CV, can be obtained with get_experiment_version_models().

Value

data.frame - cross validation data coming from model_id.

get_model_feature_importance

Get feature importance corresponding to a model_id.

Description

Get feature importance corresponding to a model_id.

Usage

get_model_feature_importance(model_id, mode = "raw")

Arguments

model_id id of the model, can be obtained with get_experiment_models().

mode character indicating the type of feature importance among "raw" (default) or
"engineered".

Value

data.frame - dataset of the model’s feature importance.

42 get_model_infos

get_model_hyperparameters

Get hyperparameters corresponding to a model_id.

Description

Get hyperparameters corresponding to a model_id.

Usage

get_model_hyperparameters(model_id)

Arguments

model_id id of the model, can be obtained with experimentModels(experiment_id).

Value

list - parsed content of the model’s hyperparameters.

get_model_infos Get model information corresponding to a model_id.

Description

Get model information corresponding to a model_id.

Usage

get_model_infos(model_id)

Arguments

model_id id of the model, can be obtained with get_experiment_models().

Value

list - parsed content of the model.

get_pipeline_id_from_name 43

get_pipeline_id_from_name

Get a pipeline_id from a pipeline_name and type for a given
project_id. If duplicated name, the first pipeline_id that match it is
retrieved.

Description

Get a pipeline_id from a pipeline_name and type for a given project_id. If duplicated name, the
first pipeline_id that match it is retrieved.

Usage

get_pipeline_id_from_name(project_id, name, type)

Arguments

project_id id of the project, can be obtained with get_projects().

name name of the pipeline we are searching its id from.

type type of the pipeline to be retrieved among "component", "template", "run".

Value

character - id of the connector if found.

get_pipeline_info Get information about a pipeline from its id and its type.

Description

Get information about a pipeline from its id and its type.

Usage

get_pipeline_info(pipeline_id, type)

Arguments

pipeline_id id of the pipeline to be retrieved, can be obtained with get_pipelines().

type type of the pipeline to be retrieved among "component", "template", "run".

Value

list - parsed content of the pipeline.

44 get_prediction

get_pipelines Get information of all pipelines of a given type available for a given
project_id.

Description

Get information of all pipelines of a given type available for a given project_id.

Usage

get_pipelines(project_id, type)

Arguments

project_id id of the project, can be obtained with get_projects().

type type of the pipeline to retrieve among "component", "template", or "run".

Value

list - parsed content of all pipelines of the given type for the supplied project_id.

get_prediction Get a specific prediction from a prediction_id. Wait up until time_out
is reached and wait wait_time between each retry.

Description

Get a specific prediction from a prediction_id. Wait up until time_out is reached and wait wait_time
between each retry.

Usage

get_prediction(prediction_id, prediction_type, time_out = 3600, wait_time = 10)

Arguments

prediction_id id of the prediction to be retrieved, can be obtained with get_experiment_version_predictions().
prediction_type

type of prediction among "validation" (not deployed model) and "deployment"
(deployed model).

time_out maximum number of seconds to wait for the prediction. 3 600 by default.

wait_time number of seconds to wait between each retry. 10 by default.

Value

data.frame - predictions coming from prediction_id.

get_prediction_infos 45

get_prediction_infos Get a information about a prediction_id.

Description

Get a information about a prediction_id.

Usage

get_prediction_infos(prediction_id)

Arguments

prediction_id id of the prediction to be retrieved, can be obtained with get_experiment_version_predictions().

Value

list - parsed prediction information.

get_project_id_from_name

Get a project_id from a project_name If duplicated name, the first
project_id that match it is retrieved.

Description

Get a project_id from a project_name If duplicated name, the first project_id that match it is re-
trieved.

Usage

get_project_id_from_name(project_name)

Arguments

project_name name of the project we are searching its id from. Can be obtained with get_projects().

Value

character - project_id of the project_name if found.

46 get_projects

get_project_info Get a project from its project_id.

Description

Get a project from its project_id.

Usage

get_project_info(project_id)

Arguments

project_id id of the project, can be obtained with get_projects().

Value

list - information of the project.

get_project_users Get users from a project.

Description

Get users from a project.

Usage

get_project_users(project_id)

Arguments

project_id id of the project, can be obtained with get_projects().

Value

list - information of project’s users.

get_projects Retrieves all projects.

Description

Retrieves all projects.

Usage

get_projects()

Value

list - list of existing projects.

helper_cv_classif_analysis 47

helper_cv_classif_analysis

Get metrics on a CV file retrieved by Prevision.io for a binary classifi-
cation use case

Description

Get metrics on a CV file retrieved by Prevision.io for a binary classification use case

Usage

helper_cv_classif_analysis(actual, predicted, fold, thresh = NULL, step = 1000)

Arguments

actual target comming from the cross Validation dataframe retrieved by Prevision.io

predicted prediction comming from the cross Validation dataframe retrieved by Previ-
sion.io

fold fold number comming from the cross Validation dataframe retrieved by Previ-
sion.io

thresh threshold to use. If not provided optimal threshold given F1 score will be com-
puted

step number of iteration done to find optimal thresh (1000 by default = 0.1% resolu-
tion per fold)

Value

data.frame - metrics computed between actual and predicted vectors.

helper_drift_analysis [BETA] Return a data.frame that contains features, a boolean indicat-
ing if the feature may have a different distribution between the submit-
ted datasets (if p-value < threshold), their exact p-value and the test
used to compute it.

Description

[BETA] Return a data.frame that contains features, a boolean indicating if the feature may have a
different distribution between the submitted datasets (if p-value < threshold), their exact p-value
and the test used to compute it.

Usage

helper_drift_analysis(dataset_1, dataset_2, p_value = 0.05, features = NULL)

48 helper_optimal_prediction

Arguments

dataset_1 the first data set
dataset_2 the second data set
p_value a p-value that will be the decision criteria for deciding if a feature is suspicious

5% by default
features a vector of features names that should be tested. If NULL, only the intersection

of the names() will be kept

Value

vector - a vector of suspicious features.

helper_optimal_prediction

[BETA] Compute the optimal prediction for each rows in a data frame,
for a given model, a list of actionable features and a number of sam-
ples for each features to be tested.

Description

[BETA] Compute the optimal prediction for each rows in a data frame, for a given model, a list of
actionable features and a number of samples for each features to be tested.

Usage

helper_optimal_prediction(
project_id,
experiment_id,
model_id,
df,
actionable_features,
nb_sample,
maximize,
zip = FALSE,
version = 1

)

Arguments

project_id id of the project containing the use case.
experiment_id id of the experiment to be predicted on.
model_id id of the model to be predicted on.
df a data frame to be predicted on.
actionable_features

a list of actionable_featuress features contained in the names of the data frame.
nb_sample a vector of number of sample for each actionable_features features.
maximize a boolean indicating if we maximize or minimize the predicted target.
zip a boolean indicating if the data frame to predict should be zipped prior sending

to the instance.
version version of the use case we want to make the prediction on.

helper_plot_classif_analysis 49

Value

data.frame - optimal vector and the prediction associated with for each rows in the original data
frame.

helper_plot_classif_analysis

Plot RECALL, PRECISION & F1 SCORE versus top n predictions for
a binary classification use case

Description

Plot RECALL, PRECISION & F1 SCORE versus top n predictions for a binary classification use
case

Usage

helper_plot_classif_analysis(actual, predicted, top, compute_every_n = 1)

Arguments

actual true value (0 or 1 only)
predicted prediction vector (probability)
top top individual to analyse
compute_every_n

compute indicators every n individuals (1 by default)

Value

data.frame - metrics computed between actual and predicted vectors.

pause_experiment_version

Pause a running experiment_version on the platform.

Description

Pause a running experiment_version on the platform.

Usage

pause_experiment_version(experiment_version_id)

Arguments

experiment_version_id

id of the experiment_version, can be obtained with get_experiment_version_id().

Value

integer - 200 on success.

50 pio_init

pio_download Download resources according specific parameters.

Description

Download resources according specific parameters.

Usage

pio_download(endpoint, tempFile)

Arguments

endpoint end of the url of the API call.

tempFile temporary file to download.

Value

list - response from the request.

pio_init Initialization of the connection to your instance Prevision.io.

Description

Initialization of the connection to your instance Prevision.io.

Usage

pio_init(token, url)

Arguments

token your master token, can be found on your instance on the "API KEY" page.

url the url of your instance.

Value

list - url and token needed for connecting to the Prevision.io environment.

Examples

Not run: pio_init('eyJhbGciOiJIUz', 'https://xxx.prevision.io')

pio_list_to_df 51

pio_list_to_df Convert a list returned from APIs to a dataframe. Only working for
consistent list (same naming and number of columns).

Description

Convert a list returned from APIs to a dataframe. Only working for consistent list (same naming
and number of columns).

Usage

pio_list_to_df(list)

Arguments

list named list comming from an API call.

Value

data.frame - cast a consistent list to a data.frame.

pio_request Request the platform. Thanks to an endpoint, the url and the API, you
can create request.

Description

Request the platform. Thanks to an endpoint, the url and the API, you can create request.

Usage

pio_request(endpoint, method, data = NULL, upload = FALSE)

Arguments

endpoint end of the url of the API call.

method the method needed according the API (Available: POST, GET, DELETE).

data object to upload when using method POST.

upload used parameter when uploading dataset (for encoding in API call), don’t use it.

Value

list - response from the request.

Examples

Not run: pio_request(paste0('/jobs/', experiment$jobId), DELETE)

52 stop_experiment_version

resume_experiment_version

Resume a paused experiment_version on the platform.

Description

Resume a paused experiment_version on the platform.

Usage

resume_experiment_version(experiment_version_id)

Arguments

experiment_version_id

id of the experiment_version, can be obtained with get_experiment_version_id().

Value

integer - 200 on success.

stop_experiment_version

Stop a running or paused experiment_version on the platform.

Description

Stop a running or paused experiment_version on the platform.

Usage

stop_experiment_version(experiment_version_id)

Arguments

experiment_version_id

id of the experiment_version, can be obtained with get_experiment_version_id().

Value

integer - 200 on success.

test_connector 53

test_connector Test an existing connector.

Description

Test an existing connector.

Usage

test_connector(connector_id)

Arguments

connector_id id of the connector to be tested, can be obtained with get_connectors().

Value

integer - 200 on success.

test_datasource Test a datasource

Description

Test a datasource

Usage

test_datasource(datasource_id)

Arguments

datasource_id id of the datasource to be tested, can be obtained with get_datasources().

Value

integer - 200 on success.

54 test_pipeline_type

test_deployment_type Check if a type of a deployment is supported

Description

Check if a type of a deployment is supported

Usage

test_deployment_type(type)

Arguments

type type of the deployment among "model" or "app".

Value

no return value, called for side effects.

test_pipeline_type Check if a type of a pipeline is supported

Description

Check if a type of a pipeline is supported

Usage

test_pipeline_type(type)

Arguments

type type of the pipeline among "component", "template", "run".

Value

no return value, called for side effects.

update_experiment_version_description 55

update_experiment_version_description

Update the description of a given experiment_version_id.

Description

Update the description of a given experiment_version_id.

Usage

update_experiment_version_description(experiment_version_id, description = "")

Arguments

experiment_version_id

id of the experiment_version, can be obtained with get_experiment_version_id().

description Description of the experiment.

Value

integer - 200 on success.

update_project_user_role

Update user role in and existing project.

Description

Update user role in and existing project.

Usage

update_project_user_role(project_id, user_id, user_role)

Arguments

project_id id of the project, can be obtained with get_projects().

user_id user_id of the user to be delete, can be obtained with get_project_users().

user_role role to grand to the user among "admin", "contributor", "viewer" and "end_user".

Value

list - information of project’s users.

Index

create_connector, 1
create_dataframe_from_dataset, 2
create_dataset_embedding, 2
create_dataset_from_dataframe, 3
create_dataset_from_datasource, 3
create_dataset_from_file, 4
create_datasource, 4
create_deployment_api_key, 5
create_deployment_app, 6
create_deployment_model, 7
create_deployment_predictions, 8
create_experiment, 8
create_experiment_version, 9
create_export, 12
create_exporter, 12
create_folder, 13
create_pipeline, 14
create_pipeline_trigger, 15
create_prediction, 15
create_project, 16
create_project_user, 17

delete_connector, 17
delete_dataset, 18
delete_datasource, 18
delete_deployment, 19
delete_experiment, 19
delete_exporter, 20
delete_folder, 20
delete_pipeline, 21
delete_prediction, 21
delete_project, 22
delete_project_user, 22

get_best_model_id, 23
get_connector_id_from_name, 23
get_connector_info, 24
get_connectors, 24
get_dataset_embedding, 25
get_dataset_head, 25
get_dataset_id_from_name, 26
get_dataset_info, 26
get_datasets, 27
get_datasource_id_from_name, 27

get_datasource_info, 28
get_datasources, 28
get_deployment_api_keys, 29
get_deployment_app_logs, 29
get_deployment_id_from_name, 30
get_deployment_info, 30
get_deployment_prediction_info, 31
get_deployment_predictions, 31
get_deployment_usage, 32
get_deployments, 32
get_experiment_id_from_name, 33
get_experiment_info, 33
get_experiment_version_features, 34
get_experiment_version_id, 34
get_experiment_version_info, 35
get_experiment_version_models, 35
get_experiment_version_predictions, 36
get_experiments, 36
get_exporter_exports, 37
get_exporter_id_from_name, 37
get_exporter_info, 38
get_exporters, 38
get_features_infos, 39
get_folder, 39
get_folder_id_from_name, 40
get_folders, 40
get_model_cv, 41
get_model_feature_importance, 41
get_model_hyperparameters, 42
get_model_infos, 42
get_pipeline_id_from_name, 43
get_pipeline_info, 43
get_pipelines, 44
get_prediction, 44
get_prediction_infos, 45
get_project_id_from_name, 45
get_project_info, 46
get_project_users, 46
get_projects, 46

helper_cv_classif_analysis, 47
helper_drift_analysis, 47
helper_optimal_prediction, 48
helper_plot_classif_analysis, 49

56

INDEX 57

pause_experiment_version, 49
pio_download, 50
pio_init, 50
pio_list_to_df, 51
pio_request, 51

resume_experiment_version, 52

stop_experiment_version, 52

test_connector, 53
test_datasource, 53
test_deployment_type, 54
test_pipeline_type, 54

update_experiment_version_description,
55

update_project_user_role, 55

	create_connector
	create_dataframe_from_dataset
	create_dataset_embedding
	create_dataset_from_dataframe
	create_dataset_from_datasource
	create_dataset_from_file
	create_datasource
	create_deployment_api_key
	create_deployment_app
	create_deployment_model
	create_deployment_predictions
	create_experiment
	create_experiment_version
	create_export
	create_exporter
	create_folder
	create_pipeline
	create_pipeline_trigger
	create_prediction
	create_project
	create_project_user
	delete_connector
	delete_dataset
	delete_datasource
	delete_deployment
	delete_experiment
	delete_exporter
	delete_folder
	delete_pipeline
	delete_prediction
	delete_project
	delete_project_user
	get_best_model_id
	get_connector_id_from_name
	get_connector_info
	get_connectors
	get_dataset_embedding
	get_dataset_head
	get_dataset_id_from_name
	get_dataset_info
	get_datasets
	get_datasource_id_from_name
	get_datasource_info
	get_datasources
	get_deployment_api_keys
	get_deployment_app_logs
	get_deployment_id_from_name
	get_deployment_info
	get_deployment_prediction_info
	get_deployment_predictions
	get_deployment_usage
	get_deployments
	get_experiment_id_from_name
	get_experiment_info
	get_experiment_version_features
	get_experiment_version_id
	get_experiment_version_info
	get_experiment_version_models
	get_experiment_version_predictions
	get_experiments
	get_exporter_exports
	get_exporter_id_from_name
	get_exporter_info
	get_exporters
	get_features_infos
	get_folder
	get_folder_id_from_name
	get_folders
	get_model_cv
	get_model_feature_importance
	get_model_hyperparameters
	get_model_infos
	get_pipeline_id_from_name
	get_pipeline_info
	get_pipelines
	get_prediction
	get_prediction_infos
	get_project_id_from_name
	get_project_info
	get_project_users
	get_projects
	helper_cv_classif_analysis
	helper_drift_analysis
	helper_optimal_prediction
	helper_plot_classif_analysis
	pause_experiment_version
	pio_download
	pio_init
	pio_list_to_df
	pio_request
	resume_experiment_version
	stop_experiment_version
	test_connector
	test_datasource
	test_deployment_type
	test_pipeline_type
	update_experiment_version_description
	update_project_user_role
	Index

